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‘4
coupling to the incident wave and random interactions among
the dipoles are considered. The variables being randomized
are the incident direction and polarization , the sizes and
orientations of the dipoles , the mutual coupling strengths ,
and the lumped load impedances. The resulting normalized
current distributions are shcwn to be insensitive to the
details of the model except at the extremely low and high
percentiles.

‘

I
”

The magnetic dipole case is investigated in detail. Its
resulting induced current distribution roughly resembles ,
but is not, a log—normal distribution with a standard
deviation in the vicinity of “.‘ 6—7 dB. This result provides
insight into some recent measurements obtained for EMP
transient field coupling to large systems.

An important implication of the results is that for a
variety of complicated systems , essentially consisting of
many small elements that the coupling is dominated by low
frequency magnetic fields , the central parts of the induced
current probability distributions are similar and nearly
log—normal. However , conclusions based on the extrapolation
of log-normality from measured values near the median to the
extreme percentiles may be susceptible to sizeable errors.

Presented in the appendices to indicate a larger scope of
the statistical approach are the basic results for some
simple electric dipole cases and an investigation of the
difference in effects caused by an elliptically polarized
incident wave versus a linearly polarized one.
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SECTION 1
INTRODUCTION AND SUMMARY

Not only does electromagnetic (EM) coupling to an

electronic system take place through intentional penetrations
such as antennas and waveguides, but in addition there usual ly
are present many inadvertent EM coupling paths through cables ,

apertures , grounding loops, etc. While usually designed to
handle the normal signal and noise background adequately, an
unhardened system subjected to an unusual EM disturbance such

as a radiated continuous wave (CW) field or the electromagnetic

pulse (EM?) produced by a nuclear detonation may be caused to

malfunction by spurious signals introduced through these

inadvertent coupling paths. Analyzing and predicting inad-
vertent coupling for the purpose of assessing and pro tecting a
complex system has historically been and still is a difficult

and challenging task.

While in principle an arbitrarily accurate analysis of
the EM coupling can be derived by solving the Maxwell equa-

tions in the context of a boundary value problem [1] , in
reality even for a relatively simple system , such a c lassical
deterministic approach often demands more effort and resources

than are available. To keep the mathematics tractable , judi-

cious use of approximations and engineering judgments are

inevitably required . Even so, the effort presently needed

to obtain approximate deterministic predictions for EM coupling

to complicated systems is still substantial [2). On the other

hand , when the s tat is t ical  properties of the coupling by
themselves play a dominant role in the problem being addressed ,

a much less detailed probabilistic approach may be adequate.

In view of these observations , a statistical theory like the

PT
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the one presented in this paper may provide a productive

new approach to EM interaction technology .

The problem of describing the EM interaction with the

many interaction paths and modes of a system has some similarity

to the problem of describing the behavior of a gas in a box .

One possible approach to analyzing the gas problem is to work

out the interaction forces and then apply Newton ’s law to
solve simultaneously for the dynamics of all the gas molecules

--a rigorously correct approach which has met with very

limited success. An alternate approach is to take advantage

of the fact that there are a large number of degrees of freedom

in the motion of the molecules and to formulate a statistical

model of the gas [3]. While this statistical approach reveals

much less information than the deterministic one and predicts

only the statistical properties of the gas, it has nevertheless
proven to be of considerable practical value. Similarly ,  the

EM interaction with a complicated system consisting of a large

number of similar basic coupling elements can be modeled

statistically to yield a number of interesting results.

App lications of these results include estimating the distri-
bution of EM coupling data to be obtained for large systems ,

and interpreting the experimental results.

The fundamental approximation in the probabilistic

approach to EM coupling is the hypothesis of a basic element

of interaction whose parameters are statistically distributed .

We take this basic element of interaction to be the small

dipole (although a more complex element could be accommodated

by the theory) and the basic variables randomized are the

incident polarization and direction , the sizes and orientations

of the basic dipoles , the mutual coupling strengths , and the

lumped load impedances. The basic elements and variables are

8



then aggregated in a probabilistically ri gorous manner  to
y ield the final results. In contrast to the deterministic

appro ach , such probabi l istic models , when app l icab le , do no t
become proportionally more complicated but should yield

increasingly accurate results as systems being analyzed
beco me more complicated, if this complication results from
the repetition of the basic element. However , we emphas ize

that the validity of the probabilistic approach to EM coupling

sho u ld be reviewed for  each case to which it is ap p l ied.

For complicated systems when the coupling is dominated

by low f r equency  magne tic f i e l d s , a wide range of bas ic
coupl ing  elemen t parameters  and sta tistical d istr ibu t ions
produce a current probability distribution whose central

part is nearly log-norma l with a standard deviation of

abou t 6 to 7 dB. However , conclusions based on the extrapo-

lation of the log—normality of the current distribution from

the va lues  near the median to the extreme percen ti les are
susceptible to substantial errors. These results may provide

some ins igh t into simila r  EMP coupl ing data  to large sys tems
[ 4 ]  ~htained for PREMPT (Program for EMP Testing ) [5]

To indicate the scope of the stati s tical coupling me thod ,

an in~’esti gation of the basic results for some simple electric
di pole cases is also presented , as is tne difference in effects

caused by the ell ipt ically polar ized inc iden t wave s and
li nearly polarized ones. In the following text , Section 2
presents the statistical physical models. Section 3 considers

the magne tic dipole in terac tion case , and shows a compar ison
with PREMPT experimental data. Section 4 presents results

for specific electric dipole cases , while Section 5 investi-

9



gates the difference in effects as caused by elliptically

versus l inear ly  polarized incident waves.

The results obtained for subresonant CW excitation

appear to be sufficiently interesting to warraDt investiga-

tion of the response of resonant electric structures to

t rans ient  electromagnetic waves.

10



SECTION 2
STATISTICAL PHYSICAL MODEL

2.1 BASIC MODELS

Consider a plane EM wave , with  a l inearly polarized
magnetic f ield H and a frequency ~~~, incident upon a thin
and small circular loop [6], as shown in Figure 1. To

obtain a basic statistical model , we randomize both the
incident f ield and the loop conf igura t ion  to have the random
variables 

~°in ’~~in~ 
for the incident wave direction , ~J for

the incident magnetic polarization, (O ,~~) for the loop ’s

normal direction i~, and R for the loop ’s radius. Accordingly,

the induced current  has an amplitude [7]

V 0 ( 1)
Z100 /~L~L + R

d 
+

where u is the permeability of the surrounding medium (usua l ly
its vacuum value 

~~~~~~~
, A

0 
the loop ’s area , L

~ 
its inductance ,

and Rrad and R1055 respectively its radiation and wire—loss
resistance.  For a small and thin loop, the induced current
random variable I ( 8 ) ,  from ( 1) , can be normalized such that
the assumed value i is g iven by

i = f l j~- 0~~~~i~~~~l ( 2 )

wi th

-, = cos O cos~p sinO~ — s ine [cosq  cosO .

— c o s ( -~ — 
~~. )  + sin~ sin (q — q~.) ] . (3)

11
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Figure 1 . Orientation of the Incide2t Field
and the Loop with Norma l n
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Here , r < r , 0 < 0 < ~i , 0 
~~~ ~ in 2~~, 0 < O.~~ < i~, 0 <

< 2i , and 0 < < 2-r are the values  taken respectively by the

random variables R , 0 , ~~, 0. , , and ‘
~~ with their corre-in in

sponding probability densities denoted by p
R
(r), p0~~~

(0 ,~~) ,

( 0 .  , and p~, ( t ~) .  In terms of these , the normal-
in , in

ized induced current has a probability distribution

F~~ 00~~~{I ~ i} = 

r ~~~~~~~~~~ 

p0~~~(0 ,~~) d0d~ PO in ,~~in~
0in’

~~
in
~

d0. d~~. p~~(~~) d~ p
~~
(r)

~~~ 
( 4 )

arid a probability density

(loop) 
~~~~~~ = i... ~~~~~~~~~~ < i}. (5)

Equations (2) to (6) give the procedure to compute the

probabi l i ty  d i s t r ibu t ion  of the induced current  from those

of the randomized model parameters .

For the coupling mechanism based on short electr ic

dipoles , as shown in Figure  2 , we can model it s imi la r ly .

For this  case , the induced current ’ s ampli tude is [9]

H L 2
~ E L I

I ~~ • 

i 
IL  

( 6 )

13
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x

Figure 2. Orientation of the Incident Field and the Wire
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II
where L is the length of the wire with direction unit vector

L, M the position along the wire at which the current is

considered , D the diameter of the wire , and E the incident
electr ic  f i e l d .  Compared wi th  the magnetic coupling case ,
the d i f f erences are tha t  E , L , and L replace , respectively,
H , n , and R and that the additional random variables M and D

are introduced . From Equation 6 , the normalized induced
cur ren t  assume s the values

= 
nsx 2

~ n b , 0 < i < 1. (7)
b ~n x

Here n is given by ( 3 ) ,  0 < s < 1 is the value assumed by
the random var iable  S M / ( L / 2 )  with probabi l i ty  density

and 1 < ‘z x < b is the value assumed by the dimension-
less length X L/D with  density p~~

(x )  where b is some
largest length constant. Finally , from (6) and ( 7 ) ,  we have
the normalized induced currents ’ probability distribution

F
(w1re)

~~I ~~. 
i} = f  p®~~~

( O ,c:,) d0d~ 
~0. ~~~~. ~

0ifl’~~in~2 2 in , in
sx n 

< 
b

Z n x —  Q n b

~~~~~~~ p~~(’P ) d~p p5 ( s) ds dx ( 8 )

and the corresponding densi ty

(wi re )  
~~ 

= 
d F (’~

ire){I < i). (9)
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The above simple coup ling models form the basis of our
stat ist ical  coupling analysis  of induced cur rents .  Before
specif ic  cases are examined , we shall make several observa-
tions . First , the ratio of the current in the magnetic case
to that in the electric case is

I 4R
= magnetic ~~~D 1 H

electric irL we

This , for a plane EM wave with E/H I = ~~~ reduces to

4R Q n ( )~~ 2R X 2 ..n(~ .)
= D 

(11)

~iw/~~ L 71 2L 2

Thus , for small and thin loops and wires of comparable sizes,
i. e . ,  2R ~ L , R ~ X~~n ( L / D ) / 2 r r 2 R )  >> 1, the magnetic coupling

is much more important than the electric one. This leads us

to place more emphasis on magnetic f i e ld  coupling .

Second , some very simple probabil i ty densi t ies  for
angular orientations, to be used later , are listed in Table 1
for convenience .

Third , consider an observation that is very simple but

usefu l  in interpreting some of the special resul ts .  For a
random variable U f ( Y )  Ic o so l , where 0 is the angle between
a f ixed axis and an or ientat ion equally probable in all
spatial directions, Y is positive wi th  a probabili ty density
p~~( y ) ,  and f ( y )  > 0 and is monotonic such that  f i (y) exists.

Then the probabil i ty  density for U

16



TABLE 1 . SIMPLE ANGULAR ORIENTATI ON DISTRIBUTIONS

Description p3~~( e ,~)

Equally probable in all directions sir~in space

Equally probable in all directions 6(0 - e
on a conical e = e surface .

~ 0
0

Fixe d direction at o = = 6 ( 0 - e
~
) ~~ 

-

= [ p~~~f
1
(y)) [

~ 
f~~~(y)] ~~ (12)

implies

up~~( u )  = -p~~(f (u)) [
~ 

f~~~(u)] . ( 13)

Th u s , if f ( y )  is a monotonical ly  increasing (decreasing )
function of y,  the p~~(u) is a monotonical ly decreasing
(increasing) func tion of u. One of the simplest examples

(10] is when f(y) = y, in which case U is the projected length

onto a fixed axis of a random length whose spatial orientation

is equally probable in all directions. Then , no matter what

probabi l i ty  d i s t r ibu t ion  that  random length has , the pu (u )
is a decreasing func t ion  of u--the projected length is more

probable to have smaller values than larger values.

17



Fourth , we emphasize that the simple models considered
are for  electrically small basic coupling elements , loops or
wires , with  the interactions among these elements neglected .
(Such interactions may be neglected , for example , when the
elements are placed far apart so their interactions are small.)

However, these mutual interactions can be taken into account
and moderately change the resulting current distribution in
a predictable way , as will be shown in the next section and
the special examples.

2.2 RANDOMIZED MUTUAL COUPLINGS AND IMPEDANCE LOADS

Consider first the mutual couplings by examining the
current induced on the kth element due to the incident field

and the multiple-scattered fields produced by currents at

all other elements (11):

Ik = c Y .kI E + E E i = I k l + G k .  ( 14 )
j �k

Her e, the superscript “o” stands for the mutual—coupling-

neglected current. Now , since the ~~ E~ is the sum of a

j ~k
large number of f ie lds  of fu l ly  randomized current  elements ,
the central limit theory applies [12). Thus G~ -

~ 
G ’ cN (~i0

’

a normal distribution with mean U G 1 and standard
deviation eG,. However , interested only in the relative

amplitude of the induced current , we can normal ize  out the
resulting factor (1 + 

~G’~ 
from (14) and get

I = I~°~~J l + C ( 1 5 )

where G e N ( O ,  cC ~G” + ~~~~~ 
Thus the standard

deviation of C measures the strength of the mutual

18



coupling , wi th ~~~~, 
<< 1 representing very weak and negligible

mutual couplinqs ~~~ ,~~ 1 representing strong coupling .

The value of a . is , of course , determined by the more detailed

physics and geometry of the basic interacting elements and

cannot be derived from statistics alone . We shall treat it

as a parameter .

From (15) and making use of the formula for the product

of random variables, we immediately obtain

p (x)

p1(i) = J dx [PG’~~~
) + PG’(-

~~)]’ 
i > ~

0 (16)

where G’ 1 + G c N(l f aG). Thus , the inclusion of the mutual
couplings among the basic dipoles gives rise to an extra
factor to the induced currents as shown in (15) and changes

the current probabili ty density from P (o) ( i )  to P 1( i) accord-
I

ing to Equation (16). To the mutual-coupling-neglected and

normalized current ~ 
(o), which distributes itself in the

interval [0,11, such an inclusion tends to enhance the
probability density for smaller i and to g ive rise to a
prolonged density tail for I > 1. For t he  mean  LI

1 
and the

standard deviation OI~ 
a simple calculation using (16) shows

l/aG
= U

~~ o) [
~ 

eGe G  + 
2f 

-~~~~~-- e
_x 2

/2] (l7a)

19



< <  1
W U (0) [1 + (l7b)

a >‘ 1G 
LI (0) °G 

. 
[1 

+ o(~~_)] (17c)

arid

= 

+ (:~~~~
)

2]
[l + c~I 

-

( L I 1 

a e 2c
~~ + 2 (

l/°G dx e 2X2) 
2

i r G  J
(l8a)

< <  l ( I ~~~~~~ + O (a2) (l8b)
0 \ L I (o )/  G

O G 
> > :  

~~~
[i ÷ (

~~~~~~~~~

) ) 2 ]  - 1 +  o(~~~). (18c)

Fur ther , one can easily show that the ratio [1 + (a 1/LI1)2]/

[1 + ( a  (0 ) /LI (0))] is monotonica lly increasing with a
~~
.

Thus , this ratio lies between 1 and 71/2 for all °G’ a variation

not too sensitive to the mutual coupling strength cC.

Next , consider the effect of a randomized lumped load
impedance R5 + iX 5 in series with the dipole elements. This

renders an induced current

20



1 (s) I~°~ 
1 i~°~ F. (19)

/ 2 R 2

%‘(‘~~~ ) + (
~

)
where is the dominant reactance of the dipole element.

Lacking the detailed information on the distribution of the

load impedances , we make the assumption that the probabiLity

density associated with an impedance is a decreasing function

of the value of the impedance. This is certainly true above

some values of impedance , and considering the prevalence

of low impedance ground loops in most systems , that value

shoul d usua l ly  be zero . A simple try would be to have a

= qe~~~~’~~~ for > 1 and q > 0, which includes the

case of rio load impedance as the parameter q -
~~ and the case

of a wide range of virtually uniform loads as q - 0, and

consequently results in a = qe~~ f 2 ~
_q
~’f for 0 < f < 1.

In view of its having a strong zero at f = 0 and being a smooth

and monotonically increasing function of f in ~O ,l) but diffi-

cult to manipulate mathematically, we can now assume and

examine a qualitatively similar but simpler 
~~~~ 

to gain
insights into the effects of such a distribution--e.g., by

choos ing

0 < f < l
= (n + 1) f rI —

0 < n

With this 
~F~~~~’ 

we obtain

(x)

p
1 (s) 

(i) = (n + 1) ~n dx . 

+ 1 
(21)
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and from which

n +  1
- 

~~~~~ 
n + 2 22)

____ — 
/°~~(o)\ (n + 2)2 

+ 
1

— lu 
~~ J (n  + 1) (n + 3) (n + 1) (~~ + 3) -

\ 1~~S .~1 ~ ~ ‘1 (23)

To effect a strong zero for the -
~ 0) of (20), n must be

much greater than 1. Consequently, from (21) to (23)

randomized loads have little influence on the induced currents ’

statistics , except slightly enhancing the near-zero portion

of the induced current probability density by ~ (n + 1)/n and

reducing the value at its end to zero. These results suggest

that it may be reasonable to ignore the load impedance random-

izat ion in our special case investiga t ions.

22



SECTION 3

SPECIAL CASES FOR MAGNETIC LOOPS

In this section we investigate the random coupling

resul ts for  several cases of the magne tic loop model .  This
could represent , for example , the EMP coupling with a com-

plicated system consisting of many ground loops . We calculate

f i r s t the i (0 ) , then take into account mutua ’ coupling by the

method outlined in Section 2.2.

3.1 VERTICAL PLAN E ORIENTATIONS

Consider f i rst a conductor geometry where near l y al l

of the loops are in vertical planes , such as rn~ gh t be the

case for a single large bay of electrical eq u ipment. If all

the loops are in ver tical planes , i . e . , the ir normals are

horizontal , and have their normal poin ted equally ~Jro b3bly in
all azimuthal direc tions , then only the hcrizcnt~~l ~agne ic

field componen t can induce current in ~he l o ~~s and ~11

horizon tal field directions have the same effect. Thus ,

wi thou t s u f f e r i n g  any loss of genera l it y , we can consider a

H
~

_ polarized plane wave incident along the -z direction

(see F igu re 1) on to thes e loops .

Now , if we f urt her ass ume tha t the loops ’ sizes are

dist ributed with ec’iallv rrobable areas between a1 
=

to a .~ = ‘r~~, then from (2) to (5) we ob ta in  the  p r o b a b i l i t y
iistribution of the normalized induced current amp litudes

~~~~~~~~~ ~ = f r d r  d~
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rc[r~~,r~ ]

( r cos~ < i. r2

I-~ere , the  subsc r ip t  (A , 2d) indicates  the case of equal ly
probable areas of loops in two-dimensions. The probability

de n s i t y ,  f rom ( 2 4 )  , is ( see Figure  3)

( ~~~~~~~~~~~~~~~~~~~~
(loop) 

— 

— —
~ (o) ‘~~~~~‘ 

— 2 
_______I (A ,2d )  (l — t ) r 2/ 1 — i  ,

( 2 5 )

where ~ r~ /r~ < 1 is the parameter showing the range of

spread of the loops ’ sizes. Thus , the induced normalized

current i
(o) 

has a most probable value o., an average

(o) 
= 

4(1 + ~ + 
2) (26)

~(A ,2d) 37T(l + a)

and a standard deviation

2 1/2

(o) 
— 

i + a 2 4(1 + a + 2)

~(A ,2d) 
— 

4 
— 

3r(l + a) 
( 2 7 )

If we assume the loops have equally probable radii ,

ins tead of a reas , between r1 
and r 2 ,  we then s i m i l a r l y  obtain

(see Figure 3)
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P (0) ( 1 )

-2  m a

71 (1-a) (loop) 
(i)

I~°~(A ,2d)

_ _ _  

\4

71(1+a) 
2 ln (~+ 

~~~~~~~~~~ 

I 4

~ (1-a) ~Ji~a
2 (loo p )

I \
I \

_ _ _ _ _ _  I _ _ _ _ _ _ _ _ _ _

r
a = T ’

(

(loo p) (loop) (0) FOR ALL a( O )~~NOTE: 
~I~~~( R ,2d) ~r (0)(A ,2d)

(loop)(loop)
(i)and p (0) (i), theFigure 3. Sketches of P

I(o)(A 2d) ~ ( R ,2d)
Normalized Inci dent Current Probability Densities
for Equally Probable Areas and Radii Cases ,
as Functions of i
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I l + / i _ i2
lni ________ , 0 < 1 < a

(loop) 2 La + /a
2 

- 

—

p (i) = -~~l 
—I ‘~~~~~‘ (R , 2d ) a

ln [ l + ~~~~~~~ L ] ,

( 2 8 )

where the subscript (R , 2d ) indicates  the case of e q u a l l y
probable radi i  in two—dimensions. Its average and standard

deviation are [131

(o) 
— 

1 + 
~ 29— _____

~(o) — + a + a2 
- ri + (30)(R ,2d) 

— 

6 j

Notice the inequal i t ies  LI~~~~2 d )  ~ 
afid 

~(R ,2d) ~
an in tu i t ive ly pl ausible resu l t  because the equa l -p robab le -a rea
case gives less weight to small sizes than does the equal-

probable—radius  case. Also , ( 2 5 )  and ( 2 8 )  approach the same

expression 2/~ ir /l - ~2) when a -
~~ 1, as they should.

The a dependences of the averages and the standard

deviations , as well as their ratios , are shown in Table 2.

We see that the standard deviations, at about 0.3 , are very

insensi t ive to the range of the spread of x (whether  a wide
spread over 0 to irr~ or a narrow one clustered near ~r~ ) and
the na tu re  of the spread (whether  equall y probable in area
or in radius) . Also quite so insensitive are the ratios of
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TABLE 2. AVERAGES AND STANDARD DEVIATIONS FOR MAGNETIC LOOPS EQUALLY
PROBABLY ORIENTED IN VERTICAL PLANES WITHOUT MUTUAL COUPLING

(o) (0)
: 
r~ (o ) (

~) ~f~2d) (0) (o) a(R 2d)
- r2 ~(A,2d) ~‘(A ,2d) (o) u (R 2d) ‘(R ,2d) (o~

~(A ,2d ) U (R ,2d)

3.0 0.424 0.264 0.623 0.318 0.256 0.803

0.050 0.425 0.264 0.620 0.334 0.252 0.755

0.100 0.428 0.263 0.614 0.350 0.250 0.713

0.150 0.433 0.262 0 .604 0.366 0.248 0 .677

0.200 0.439 0.260 0.593 0.382 0.247 0.645

0 .250 0. 446 0 .259 0.581 0.398 0.246 0.618

0.300 0. 454 0 .258 0.569 0.414 0.246 0.594

0 .350 0.463 0.258 0.556 0.430 0.246 0 .574

0.400 0.473 0.258 0.545 0.446 0.248 0.556

0.450 0.484 0.258 0.534 0.462 0.250 0.541

0.500 0.495 0.260 0.524 0.477 0.252 0.529

0.550 0.501 0.261 0.515 0.493 0.256 0.518

0.600 0.520 0.264 0.508 0.509 0.259 0.509

0.650 0.533 0.267 0.501 0.525 0.264 0.502

0.700 0.547 0.271 0. 496 0.54 1 0 .269 0 .497

0 .707 0.549 0 .272 0 .495 0 .543 0 .269 0.496

0.750 0.561 0.276 0.492 0.557 0.274 0.492

0.800 0.575 0.281 0.489 0.573 0.280 0.489

0.850 0.590 0.287 0.486 0.589 0.286 0.486

0.900 0.605 0.293 0.485 0.605 0.293 0.485

0.950 0.621 0.300 0.484 0.621 0.300 0.484

1.000 0.637 0.308 0.483 0.637 0.308 0.483
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the standard deviations to the corresponding averages , varying

from about 0.5 to 0.7.

To correspond to customary electrical engineering

practice , we now examine the probability law of ~~~~~ when
represented as the (cumulative) probability distribution of

its logarithmic value in decibels : ~ (o) 20 1og 10 I~°~~. To

represent the ‘~esults , we use a log—normal graph (a log-normal

d i s t r ibu t ion  [14] is a positively-sloped s t ra ight  l ine in such
a graph) to plot the probability distributions FlI~

0
~ < i .~

[15]. These plots for the a = 0 and a = 1 cases are snown in

Figure 4. These plots, specified by (25) and (28) , are not

log—normal and therefore are not straight lines. But they

are approximately l inear , up to ~75 percent in the (R,2d) and

‘~6O percent in the (A ,2d) cases for a = 0 and up to ~5O percent

in both cases for a = 1; and they flatten to one at higher

percentiles. The flattening at the higher percentiles is

caused by the induced current being bounded by the maximum

response of the basic element of interaction (when mutual

coupling is ignored) , which provides the normalization of the

curves. The effect of the mutual interactions tends to

straighten the curves , as was explained by (16) and its fol-

lowing reasoning , and is shown in Figure 5. Figure 5 plots

the mutual coupling included distributions F11 E I~°~ 1 +

< i}, with mutual coupling strengths 0
~ 

= 1 and 
~G 

= 30 , for
the corresponding cases in Figure 4. Excluding the extreme

percentiles , curves in Figure 5 clearly exhibit rather close
resemblances to straight lines. The resemblance is better
for larger 0G~

Within this resemblance , I is approximately log-normal
and its average ~i and standard deviation a are related

approximately to those of V 20 log10I by
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= l n l O ~ln u - ln [1 + (0
2

]} 
(31)

= 
ln lO Iln [i + (i)

] 

. (32)

Using the relation (18) that links the o/ ~.i of I to the
of ~~~~~~~~~ we immediately have

a (o) < < C (33a)
Y V

where

c (o) ln lO ~~~ln [~ + (G~~~~~) 
~~~ (33b)

~~~~~~~~~~~~~~~~~~ + (

~~~~~
)
2)]

. (33c)

The superscripts o and of V represent , respectively , the

cases of -~ 0 and -, 
~~~. The two limiting standard devia-

tions of the logarithmic currents~ o ~~~~ 
and , are plotted

in Figure 6 as functions of G (0)/u (0) . The shaded area ,

representing the range of ~~~~~~~~~~~ given in Table 2 , exhibits

the narrow ran ge of possible values for the corresponding
log—normally distributed standard deviations a (o) andV V
Figure 6 shows a range of standard deviations for Y encom-

passing ~4 to ~8 dB for any distribution-size parameter a ,

and centered around ~6 to ~7 dB.
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Very little statistical data on EM coupling to 1arc~e
systems is available , most that exists was taken from the

PRENPT program [16]. These tests measured the maximum peak-
to—peak current response to broadband pulsed fields and

therefore are the result of a more complex in terac tion than
the CW case analyzed in this paper; however , it is sti l l
int eres t ing  to see if the ana lys is  and the da ta  fo l low the
same general trends.

The distributions of ~hree sets of such measured data ,

normalized by each of their own median value , are shown in

Figure 7 [ 1 7 ] .  They are ra ther  s imilar  to each other  and
are approximately log-normal with standard deviations to

their logarithmic values at ~5 to ~ 7 dB. A comparison to

the theo ry and the data is also shown in Fi gure 7 by overlaying
the median-value—normalized theoretical results , for the

cases of (A,2d)  and (R ,2d) with parameters a and °G being
O and 1, on top of the data. The comparison shows rather

good agreement •for the ~40 percent and higher percentiles ,

but displays a discrepancy at low percentiles : there are

fewer low (compared with the median value) currents in the

data than in the theory . This discrepancy is not su rp r i s ing .
We suspect that the smaller number of low current measurements

is caused at least in part by a systematic bias in the current

data that wou ld resul t from an engineer ing judgment to avoid
measuring currents that are obviously u n i n t e r e s t i n g  because
they are so small and are difficult to measure in the background

of system noise.

To the extent that the theoretical curves can be approxi-
mated by straight lines near the median value of the distri-

butions , and therefore by log-normal distributions over this

region , the standard deviations implied by their slopes are

similar to those of the data (see Figure 6).
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3.2 THREE-D IMENSIONAL ORIENTATIONS

For loops oriented equally probable in the three-] dimensional space , as mi~ ht roug hly be the case for a large
electrical Eacility, we can obtain the induced current

probability densities by the same procedures used in

Section 3.1. For the equally probable area case ,

( 1 — a , 0 < i < a
(loop) ,.~~~ — 

2p I l l  — 2I (A ,3d) 1 - a 
- i, a < i < 1 ( 3 4 )

and

(o) 
— 
1 + a + 

2

~(A ,3d) 
— 

3(1 + a) ~(A,2d)

2 2 2 1/2

°(A,3d) 
= [ 1 + a 

- 
( l ± a + a  ) I < 

~ (A ,2d) 
- (36)

For the equally probable radius case ,

(ln ~~ - , 0 < i < ~~t
(loop) 

— 
1

(R,3d) 
~~~~ - 

1 - a 
in , a < i < 1 (37)

and

(o) 
— 

1 -i- a 38
~(R,3d) — 

4 ~~(R , 2 d )
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2 2 1/2

~(o) — 1 + a + a 
— 

1 4 
< (o)

(R,3d) 
— 

9 4 / (R,2d) -

The three—dimensional probability densities are depicted

in Figure 8. They are monotonically decreasing functions of

i , as expected in view of the remark made at (12) and (13)

Als o , they favor  lower cur ren t  values more than their  two-
dimensional counterparts do , as can be seen easily in Figure 8
or by observing the inequalities in (35) to (39) . Such a

behavior is intuitively obvious because in three-dimensions ,

unlike in two-dimensions , there is more solid angle within a

~~ near the perpendicular to a given direction than there is

near the parallel. Furthermore , similar to the two-dimensional

cases , we have 
~(R,3d) ~ ~(A,3d) 

and 
~(R 3d) ~

Table 3 lists the numerical dependences on a of the averages

and standard deviations. They exhibit even more insensitivity

to the changes in a than the two-dimensional cases do.

Figure 9 , sim ilar to Figure 4, plots in log-normal graphs

the distribution of I~°~ for the three—dimensional cases

(A ,3d) and (R,3d) with a = 0 and a = 1. Finally, we point

out that an inclusion of the mutual coupling effect , similar

to that in Section 3.1 , again renders a cumulative current

distribution that is in its central part roughly log-normal

and results in standard deviations for 20 log10 I even slightly

more closely packed near ~6 dB. The last statement can be

easily seen by reading the o (0)/u
(0) values of Table 3 into

Figure 6. A comparison of the PREMPT data and the three-

dimensional loop distribution results , similar to the two-

dimensional results shown in Figure 7, is shown in Fi;ure 10.

As before , the trends in the theory and the data correspond

quite well.
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TABLE 3. AVERAGES AN D STANDARD DEVIATIONS FOR MAGNETIC LOOPS EQUALLY
PROBABLY ORIE NTED IN THREE—DIMENSIONAL SPACE

(0) (0)
- 

r1 (0 )  (0) ~(A ,3d) (0) (0) R ,3d)
~~ 1A ,3d) ‘(A ,3d) 

• 
(0) u (R ,3d) ‘

~(R ,3d) 0)
~(A ,3d) ~(R ,3d)

O 0.333 0.236 0.707 0.250 0.220 0.882

0.05 0.334 0.235 0.705 0.263 0.219 0.835

0.10 0.336 0.235 0.698 0.275 0.218 0.794

0.15 0.340 0.234 0.690 0.288 0.218 0.759

0.20 0.344 0 .234 0.679 0.300 0.219 0.729

0.25 0.350 0.234 0.668 0.313 0.219 0.702

0.30 0.356 0.234 0.656 0.325 0.221 0.680

0.35 0.364 0.234 0.644 0.338 0.223 0.661

0.40 0.371 0 .235 0.634 0.350 0.225 0.644

0.45 0.380 0 .237 0.624 0.363 0.228 0.630

0.50 0.389 0.239 0.614 0.375 0.232 0.619

0.55 0.398 0.242 0.606 0.388 0.236 0.609

0.60 0.408 0.245 0.600 0.400 0.240 0.601

0.65 0.419 0.249 0.594 0.413 0.245 0.594

0.707 0.429 0.253 0.589 0 .425  0.250 0.589

0.70 0.431 0.254 0.588 0.427 0.251 0.589

0.75 0.440 0.258 0.585 0.438 0.256 0.585

0.80 0.452 0.263 0.582 0.450 0.262 0.582

0.85 0.464 0.269 0.580 0.463 0.268 0.580

0.90 0.475 0.275 0.578 0.475 0.275 0.578

0.95 0.488 0.282 0.578 0.488 0.282 0.578

1.00 0.500 0 .289 0.577 0.500 0.289 0 .577
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3.3 REMARKS

The results of the model , taken together with the

limited available data , lead to the following tentative

conclusions. First , our statistical coupling models are not

of the type that have a large number of parameters and can be

made to fit virtually any data by adjusting these parameters.

On the contrary , our models have very few parameters and

yield distributions for their major central part insensitive

to the values of those few parameters (see Section 3.2 for

three—dimensional cases). In view of this , the correspondence

between the data and the models , as pointed out in the orevious
sections , may have important implications in two aspects. On

the one hand , the EM coupling to large systems , when dominated

by low f requency magnetic f ields , is largely insensitive to
the coupling detail and yields a distribution whose central

part is nearly log-normal with a standard deviation of about

6 dB. On the other hand , precisely because of the insensi-

tivity of the major central part of the distribution to the

model ,  one may not be able to use it to determine the detailed
parameters of the coupling (e.g., the loops ’ orientations ,

their relative sizes , their mutual coupling strengths , etc.).

Second , the shapes of the extreme percenti les of the d is t r ibu-
tion may depend on and be sensitive to the detailed nature
of the coupling . This , combined with the first conclusion ,

would make apparently plausible assumptions concerning the

data distribution function (e.g., log-normal) and the extrapo-

lation to the extreme percentiles based on the central part

of the distribution susceptible to substantial errors. Con-

sequently, any conclusions dependent upon such assumptions

and extrapolations might be susceptible to substantial errors.
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R d ~~~~ (k r ) 4 
(k r ) 3 << 1wL~ wur

2rr r
R a 2ir t~loss w w w 
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where the last inequality uses the assumption that the
thickness t of the ioop wire is much larger than the
conducting loops ’ skin depth. Using this , (1) implies
(2)

8. See any textbook on probability theory , e.g., E. Parzen ,
Modern Probability Theory and Its Applications , Chapter 7
(Wiley & Sons , 1960)

9. For thin short wires , linear wire current distribution
gives f(M ,L) = M/(L/2), and 0 << L gives the static self—
capacitance

c ~T E L
- 

41n (~ )
Thus

Rrad~ ~/~~ k
2
L
2
~ 

k~~L~ << 1
iwC iwC ln(5)

and

L
R c irDS ~w 2 2
loss w w
1 1 << 1.

iwC 8ln~~ )

Again , the last inequality uses the assumption that the
wires ’ diameters , although small compared with the wires ’
lengths , are not small compared with the conductor ’s
skin depth 

~~ 
at the frequencies considered . Using these ,

we obtained (6) and (7).

10. W. Feller , An Introduction to Probability Theory and Its
Application , Vol. 2, pp. 32 (Wiley & Sons , 1971).

11. This can also be shown formally by using circuit analysis
notations. For a linear network , we have for the kth
ci rcui t
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~~~~~~~~~~~~~~~~~~~~~~ Z.k akEk
+
~~~~~

I. Zi k
k Zkk Zkk Zkk

where Zkk is the self-impedance and Z~j~ i � j, are the
mutua l  impedances. Thus , we obtain

E2Z~~ 5jk 
— Zjk)Ii 

= 

~
6jk a~ )E~

or in matr ix  notation

I = a E

where the mat r ix  Z’ has diagonal elements Z~ j and off-
diagonal elements Zjj, i ~ j. Formally inverting Z’ 1
we get

ctkEk ç a. E .g cakE= Z kk 
~~ + Z

kk Aki cakEk~~ 
Zkk 

~l + Gkç

where

11~~I \ l1 
— ~~~ 0ki - 

~~ / jki Zkk Z•~ + 0

for i~ j

12. See any probability textbook , e.g., Reference 8, Vol. 1,
Chapter 10 ( th i rd  edit ion , 1 9 6 7 ) .  S t r ic t l y  speaking , the
f i e lds  from all other dipoles j ~ i are not totallyindependent of each other , because of their  mutual couplings.
Intuitively, these E

’
’s are approximately and essentially
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independent random variables since their deterministic
mutual coupling mechanisms are controlled by the independent
random variables associated with their geometric
configuration. However, we have not been able to prove
such an approximate and intuitive independence and quantify
rigorously its implication to the applicability of the central
limit theory .

13. Use the integration results

fdx ln[1 + A~~ x
2] sin~~x + x [ln(l + /~~‘~x

2 ) 
- 1]

fxdx ln[l + /1 - ~
2] 

~[vmn 
V - - (ln V - 1)]

fx
2dx ln[l + /1 - ~~2 ] = 

x3ln v 
- 

x 3 
- 
x/1 - x2 

+ 
sin 1x

where V 1 + /1 - x2 .

14. See , e.g., J. Aitchson and J. A. Brown , The Log-Normal
Distribution, The Cambrid ge University Press (Reprinted
1963 , first printed 1957).

15. The Fi I~°~ i} are obtained by integrating the correspond-
ing densities as:

r~~~~00P ) ~~~( O )  < 4
(A ,2d) 1 — I 1T ( j  — 

2)

f di (,~ç — — /~2 )
p1.

di
ci
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— i~ + sin ’i — ( j v ’~~~~— ~2
•‘) < i < L

= 2 1 L  — —
2 ci S1.fl -

— ci ) 1

— i
2 

+ iUF — 
2 IT 

<

* (~~~ 

~~~~~~ 1— 12 
]di , 0 ~ Ti

0 
+ /~2 - ~

2 j
(loop) 

~~ 2F (R 2d) 1 ~ ~ - f  di m u  + - ~ I
_ f di ln {c i + / c x2 _ j 2]

El

— J di in i , ci < i <
0

- cisin~~ ! + i

2
i r ( l  — ci) . i. + /~ — i2 \

I ,
/2  . 2 )  — —

ci + a’ci — 1.

sin 1i - + i in(

i + A — ~2) , ~ 1 ~

16. See Reference 5.
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• • 17. See page 9 of Reference 4.

18. See Reference 14.

19. See , e.g., J. A . Stratton , Electromagnetic Theory , p. 279
(McGraw—Hill, 1941).
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A P P E N D I X  A

SPECIAL CASES FOR ELECTRIC WIRE S

The results of the short electric dipole coupling

probability distributions of I~°~ for several interesting

special cases are given in this section. Here , the nota-
tions used are : K ~

21n b/(b2ln a) < 1; x1 (i) the solution

of in b = ib2 in x1; and 1 << a < L/D E X < b.  The analysis

fo l lows  procedur es s i m i l a r  to those in Section 3, but with
the basic coupling described by (6) to (10).

A.l COPLANAR ORIENTATIONS

For the short wires all lying in the 9 = ~i/2 plane (see

Figure 2) and oriented equally probable in all azimuthal

directions , a plane wave incident from the +z axis induces

the following current probabilities.

When both wires ’ lengths X and the relative position of

sampled current locations S are fixec , we obtain for the

normalized current

(wire) (i) = 
1 

, 0 ~~~ i 
•~~• 

1. (A—i)
I ~ (l ,2d) 

‘T 1 —

Here the subscripts (1,2d) indicate the first case considered

in two—dimensions. It has a 
~(i ,2d) 

= 2/u = 0.64 and a

~(i,2d) 
= (1/2 - 4/ 2)1/2 = 0.31.

When X is equall y probable in the interval [a ,b] and S

is fixed , we obtain

A- i



b
(w i r e )  . 2

P (0) ( 2 ,2d )  
~~~~ = 

~(b 
- a)

max(a ,x1(i)

b2ln x  

2 
0~~i i ll.

2 i fib in xx l n b 1 - i  2x in b (A-2)

Its average and standard deviation can be obtained numericall y.

When X is fixed and the current samp linc loc~~~ions are
equally probable anywhere along the wire , S uniform in [0 ,1],

we obtain

~ (wire) (i) = in ~~~ 4 - 
~~~, 0 < i < 1, (A-3)

I (3 ,2d) 1 — —

which has a 
~~~~2d) 

= 1/u = 0.32 and a °(3 ,2d) (1/6 - 1/u 2)1”2

0.26.

To investigate the effects of nonnormal incidences , we

let the incidence make an angle 9~~~ ~ 0 with the -z axis.

~ow the polarization angle ~ influences the results. For

example , if is a fixed angle 
~~ 

and both X and S are fixed ,

then

(wire) (i) 
___________ 

, 0 < i < sin e ’  I
(4,2d) u 

. 2 , .2 
0

vsin 13 -

( A — 4 )
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where 9’ is the angle between the z axis and the incident

polarization E , cos 8’ = cos sin 9 . The (A-4) has a

~(4,2d) 
= sin 9’/u and a 

~(4,2d) 
= (1/2 - 4/u2)V2 sin

If , instead of a fixed value , the c~ is equally probable in
all angles over [0,2u] , then

f(~~) d~ , 0 < i < cos

(wire) = 1
P
1 0 (5,2d) 

~~.2 2 

f(~~) d~~, cos < i < 1

- cos

sin (A—5)

where

4 1( , )  - 
2 1/2 2 . 2 2 .2 1/2

(1 — ~ ) ( : , sin G0 + cos — i ) (A— 6)

~;otice , of course , both (A—5) and (A—6) reduce to (A-i) as

- 0. The nature of the probability densities (A-i) to (A 5)

is depicted by Figure A-i.

~.2 THREE-DIMENSIONAL ORIENTATIONS —

For wires with equally probahl.e orientations in a three-

dimensional space. th~ induced currents ’ probability distri-

hutiuns are independent of the incident and the polarization

directions. Except the trivial case of fixed X and fixed 5,

which incurs a uniform currents ’ probability distribution ,
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,EQ . (A-4) FOR FIXED WIRE LENGTHS

/ AND FIXED CUR PE~ T P0SIT~ONS ,
f OBLIQUE INCI DENCE AT ANGLE O0

(wire ) / ~~ cH P0LAR iZATI0N~~0
P (0) ( i )  

/ 
I j
EQ. (A-5) S ME AS FOR (A-4)
EXCEPT IF~I I~ U N I F0RML ~DI S T R I BU ~/

EQ. (A-2) FOR UNIFORM WIRE
LENGTHS AND FIXED CURRENT /POSITIONS , NORMA L IN C I DEN ~E I

~~~~ .~~. 1
/ 1  EQ. (A-i) FOR FIXED WIRE

/
• 
/ \ 

LENGTHS 4ND FIXED CURRE~4T

.,
,. / I POS IT ION$ , NORMAL INC DENCE

/
/ /

-
,

. / I
\

I \~~T
2 I 

2
— , ‘7r sin O 07fl EQ. (A-3) FOR FIXED WIRE LENGTHSI \I AND UNIFORM CURRENT POSITIONS,1 T h~

NC Z DE N CE
_ ________L 

_ _ _ _ _ _ _ _ _  

____

cosO ____________

-- O f
J1 -cos

2
~ 0 ~~ 2o

1

re)Figure A-i . Probability Den~.ities ~~~ (1) of Induced Currents

on Short Electric Wires Uniform ly Oriented in a Plane
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several interesting cases are given in the following and their

resulting probability densities are sketched in Figure A-2.

If X is uniform in [a,b] and S is fixed , then

b

___  

~ J dx b t h~~< 0 <

(wire)  . 1 
a x2ln b 

—

(1, 3d)
( i )  = 

b - a 
~

j

b 

dx b
2ln x K < i <

x1 (i) 
x2in b

(A—7)

If X is fixed and S is uniform in [0,11 , then

(wire) (~~) = —ln i , 0 < i < 1 (A—8)
(2 ,3d) 

— —

which has an average 1/4 and a standard deviation /1/9 - 1/16

= 0.22. If both X and S are uniformly distributed , respectively,

in (a,b] and [0,1], then

b 1

f-i n~~~~ 2
i J l n x dx +f ~~-~~-

‘
-

xa K

b

(wire) b2 in x
P (0) (i) = 2 dx , 0 < i < k

(b — a ) l n  b \  
(
~~~~~~~

) 
x(3 ,3d)

1 b

2 dx , K < i ~~~ ldi ’J in x

x1
(i’) X

(A—9 )
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(wire )
P (0)(i)

EQ . (A-b ) FOR UNIFORM WIRE
LENGTHS AND F I X E D  CURRENT
POSITIONS , BUT WITH ALL

~/U L~~~~R I ENTAT 10 N FIXED

EQ . (A-8) FOR FIXED WIRE
\ LENGTHS AND UNIFORM CURRENT I
\ POS ITIONS

\ I EQ. (A- 7)  FOR UNIFORM WIRE
LENGTHS AND FIXED CURRENT
POSITION S

EQ . (A-9) FOR UNIFORM WIRE ~~
—.

LENGTHS AND UNIFORM CURRENT J~POSITIONS
1<

Figure A-2. Probability Densities ~( 71~ e) ( 1 )  of Induced Currents on

Short Electric Wires Uniform ly Oriented in 3-Dimensional

Space , Except for Eq . (A-b ) which is for all Angular

Orientations Being Fixed.
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Now , to distinguish the separate effects as caused by the

randomness of the lengths X and that of the relative positions

S, we consider the wires ’ orientation , as well as the incident

wave direction and polarization , to be fixed . Then , a uniform

X in [a,b] and a fixed S gives

[bin x (i)]2(wire) . 
— 1

(4  3d) 
~ — 

(b — a) x1 (i) in b t2ln x1
(i) — 1]

K < i 1. (A—lO)

H owever , a f ixed X and a u n i f o r m  S in [0,1] gives simpiy a

unif orri ~~~~~~ in [0 , 1 ] ,  as i t should be. F i n a l l y ,  the proba-
bility density for both the X uniform in [a ,b] and the S

uniform in [0 ,11 is exactly (A—7) again. From these , we clearly

see that as far as the induced currents ’ probability is con-

cerned , the e f fec t of randomness in the curren t measuremen t

position S, uniform or fixed , is the same as that of randomness

in the wire orientations in three-dimens !onal space.
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APPENDIX B

ELLIPTICALLY POLARIZED INCIDENCE

If the incident monochromatic EM wave is elliptically

polarized , then the coherence of the two superposing perpen-

dicular linear field components substantially changes the nature

of the probability density of the basic induced current i

To bring out this effect , we shall consider a simple case of

an elliptically polarized wave incident upon a short wire of

direction L from +z axis , with a semi-major axis of polarization

in the y-direction and an angle of ellipticity •< in (0,~ /4]

defined by E~
nC/E~

nC
~ E tan x < 1. Notice that by definition

the ~ — 0 case is a linear polarization , and the < — u/4 one

is a circular polarization [19] . It follows then that

= sin 9 • /cos2 ~(l 
- tan2 ( )  + tan2 <

(B-i)

With this ~ replacinq the in •(3)- -and (6), we~~btai~ the

following results.

B.1 COPLANAR ORIENTATIONS

When the wires lie in the 13 = u/2 plane but orient
themselves with equal probability azimuthally and have fixed

X and S, we obtain

0 O < i < t a n ~~

~(wire~ x) (i)
1 , tan x < i < 1

l i — i2 /i~~~— tan 2
x 

— —

(B—2)

B-i



This reduces to (A—i) when x -
~ 0 for a linear poiarization , as

it should , becomes (i - 1) when 
~ 

-. u/4 for a circular polar-

ization which does not distinguish one direction in the plane
from another , and has

_ _ _ _ _ _  x - ’ O
0) = ~~- ~ ( 1~J- , V~. - tan2~~) .

~~ 2 / r r

‘< (1 ,2d) u 2 
x — (8—3)
__-.__-,. 1

x — 0 /1 4\ l/2

2 2 ~l/2 ~ 
—

(0) = ) s e c x — 
(o)

~X (l ,2d) 2 ~X (1 ,2d)

x — u/4 (B—4)
-a.. 0

where E(:,k) is the elliptical integral of the second kind .
( 0 )  ( 0 )  . -Table B—i shows ~i and 3 as functions ot
(;< , 2d) C ~ , 2d)

TABLE B-i . AVERAGES AND STANDAR D DEVIATIONS FOR INDUCED CURRENT ON W IRES
UNIFORMLY O R I E N T E D  IN A PLANE , WITH AN ELLIPTICALLY P O L A R I Z E D

AND NORMALLY I N C I D E N T  PLANE WAVE

(degree) tan ~ u

0 0.0 0.637 0.308 0.483
4 .5 0.079 0.643 0.299 0.466
9.0 0.158 0.659 0.280 0.425
13 .5 0.240 0.679 0.260 0.382
18.0 0.325 0.707 0.231 0.327
22.5 0 .414 0.738 0 .203 0.276
27.0 0.510 0.773 0.178 0.230
31 .5 0.613 0.818 0.136 0.166
36.0 0.727 0.868 0.100 0.115
40.5 0.854 0.928 0.066 0.071
42 .5 0.9 16 0 .959 0 .025 0 .026
45 1.000 1.000 0 0
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B.2 THREE-DIMENSIONAL ORIENTATIONS

When the wires orient equally probable in the three-
dimensional space , the probability density for a uniform X
in (a,b] and a fixed S is

I b ‘a C a )f ~
, f~a

dx 
b 

~x • tan , • ~ t n g~ t an ,,
a UQ

IX )  
~ ,

~.t r. . XI 
~~~~~ o /

1 . 3d) ~~ —

2 2 ,~ 2 .  2‘(b— a) i~~ —.i . ‘a - a , *1 L U
0 

1 ) — i  t an  ,~

•!

_ b
dx f

dta • t I f l , L L~~~~

~~~~~~ 

~~~~ 
/z dU • ta~ ,x~ J I X )  a

f x  f  du 
• ~~. tX.1~

(B — 5 )

which , of course , reduces to (A—7) as x + 0. Here , u ( x )

ib2ln x/(x2ln b); u1(x) ib2ln x/(tan 
~< • x 2ln b); u0(x1) 1,

from which x1 — b as i 1 and x1 — a as i ~ K; and u1(x0) E 1,

from which x — b a s i — t a n < and x - * a a s i + K t a n x .
0

Several special cases of (B- 5)  are worth noticing . For
wires with the same lengths , a -~ b and (B-5) reduces to
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1.[
1 

, O~~~ i < t anX

(wire,x )
p (i) = / dv G ( v ; i , X )
I~°~ (3,3d) 

~~j
-
i2)/(l ta 2

)çf ) ,

0
( B — 6 )

where

G(v;i ,X) a 1.

~ /~i-v
2
~ [1

2 (l-tan 2
~ )] [1-i

2-v 2 (l-tan 2
~ )]

(B—7)

This density further reduces to a uniform one as x 0 and to

i//l—i2, with an avera ge 71/4 ‘
~~ 0 . 7 9  and a c = (2/3_712/i6)l~

’2

“~ 0.22 , as x 71/4 . In general , the ( 8— 6 )  starts wi th  value
0 at i = 0 and ends with value (i—tan 2

~ )
1”2 at i = 1.

The general behavior of (B-5) starts with 0 at i = 0,

reaches a maximum in 0 < i < 1, and ends with 0 at i = 1.
Fur ther , as x — 11/4 , (3—5) reduces to

p1(i) 

~~~~~~~~ 

b 
• (b

2 in~~~
)

2 
. 1 

0 ~ i ~ K

a x ln b  / i — u~~(x)

J dx ,

x1(i) (B—B)
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From the above , we see that for spatially randomly

oriented wires with no preferred direction , the elliptically

polarized incidence , as compared to a linearly polarized one ,

makes it less probable for smaller (near zero) induced
‘currents and pushes the most probable current to a higher

value (toward the maxim um possible current) . A basic differ-

ence from the linear polarization case is that the probability

densities are not a monotonically decreasing function of the

induced current amplitude. In view of the similar nature

with which the polarizations enter into the basic coupling

mechanisms , (1) and (6) , these conclusions apply to the

magnetic coupling cases as well as to the electric ones.

.
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